A Mean Value Theorem on Bounded Symmetric Domains

نویسندگان

  • MIROSLAV ENGLIŠ
  • Christopher D. Sogge
چکیده

Let Ω be a Cartan domain of rank r and genus p and Bν , ν > p−1, the Berezin transform on Ω; the number Bνf(z) can be interpreted as a certain invariant-mean-value of a function f around z. We show that a Lebesgue integrable function satisfying f = Bνf = Bν+1f = · · · = Bν+rf , ν ≥ p, must be M-harmonic. In a sense, this result is reminiscent of Delsarte’s two-radius mean-value theorem for ordinary harmonic functions on the complex n-space Cn, but with the role of radius r played by the quantity 1/ν. Let Ω = G/K be an irreducible bounded symmetric (Cartan) domain in its Harish-Chandra realization (i.e. a circular convex domain in C centered at the origin), dm the Lebesgue measure on Ω normalized so that m(Ω) = 1, and denote by K(z, w) the Bergman kernel of Ω with respect to dm and by p, r its genus and rank, respectively. For ν ∈ R, it is known [FK1] that the integral c(ν)−1 := ∫ Ω K(z, z)1−ν/p dm(z) is finite if and only if ν > p − 1; in that case, one can consider the weighted Bergman spaces Aν(Ω) of functions analytic on Ω and squareintegrable against the probability measure dμν := c(ν)K(z, z)1−ν/p dm(z). It can be shown that the point evaluations are continuous linear functionals on Aν and the corresponding reproducing kernels are [FK1] Kν(z, w) = K(z, w). (1) The Berezin transform Bν on Ω is the integral operator defined by Bνf(w) : = ∫ Ω f(z) |Kν(z, w)|2 Kν(w,w) dμν(z)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angular Derivatives on Bounded Symmetric Domains

In this paper we generalise the classical Julia–Wolff– Carathéodory theorem to holomorphic functions defined on bounded symmetric domains.

متن کامل

SOME FUNDAMENTAL RESULTS ON FUZZY CALCULUS

In this paper, we study fuzzy calculus in two main branches differential and integral.  Some rules for finding limit and $gH$-derivative of $gH$-difference, constant multiple of two fuzzy-valued functions are obtained and we also present fuzzy chain rule for calculating  $gH$-derivative of a composite function.  Two techniques namely,  Leibniz's rule and integration by parts are introduced for ...

متن کامل

Toeplitz Operators and Solvable C*-algebras on Hermitian Symmetric Spaces

Bounded symmetric domains (Cartan domains and exceptional domains) are higher-dimensional generalizations of the open unit disc. In this note we give a structure theory for the C*-algebra T generated by all Toeplitz operators Tf(h) := P{fh) with continuous symbol function ƒ G C(S) on the Shilov boundary 5 of a bounded symmetric domain D of arbitrary rank r. Here h belongs to the Hardy space H(S...

متن کامل

Estimates on Green functions and Schrödinger-type equations for non-symmetric diffusions with measure-valued drifts

In this paper, we establish sharp two-sided estimates for the Green functions of non-symmetric diffusions with measure-valued drifts in bounded Lipschitz domains. As consequences of these estimates, we get a 3G type theorem and a conditional gauge theorem for these diffusions in bounded Lipschitz domains. Informally the Schrödinger-type operators we consider are of the form L + μ · ∇ + ν where ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999